Effects of Long-Term, Low-Dose Macrolide Treatment on Pseudomonas aeruginosa PAO1 Virulence Factors In Vitro

ثبت نشده
چکیده

Pseudomonas aeruginosa (P. aeruginosa) is a common cause of chronic airway infections in patients with pulmonary disorders such as diffuse panbronchiolitis (DPB) and cystic fibrosis (CF). Long-term, low-dose macrolide treatment has markedly increased long-term survival of patients with DPB. Consequently, researchers are interested in using macrolides to treat CF patients. Previous studies have demonstrated that macrolides influence P. aeruginosa virulence. However, most studies evaluated the regulatory effects of macrolides on P. aeruginosa virulence factors after treatment over a short period (<48 hours). In this study, we subcultured P. aeruginosa PAO1 for 2 to 18 months in the presence of lowdose macrolides and evaluated antibiotic minimum inhibitory concentrations (MICs), bacterial growth, and virulence factors, including various motilities, biofilm formation, and production of rhamnolipids, total protease, elastase, and pyocyanin. The production of many virulence factors gradually decreased with macrolide exposure, and some were maximally affected after only 2 months. Despite an initial inhibition after treatment with macrolides, treated bacteria later exhibited increased biofilm formation compared to untreated controls. These findings suggest that low-dose macrolide therapy for chronic airway infection should be administered for at least 2 months to achieve optimal effects against P. aeruginosa.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autoinducer-2 Facilitates Pseudomonas aeruginosa PAO1 Pathogenicity in Vitro and in Vivo

Bacterial communication systems, such as quorum sensing (QS), have provided new insights of alternative approaches in antimicrobial treatment. We recently reported that one QS signal, named as autoinducer-2 (AI-2), can affect the behaviors of Pseudomonas aeruginosa PAO1 in a dose-dependent manner. In this study, we aimed to investigate the effects of AI-2 on P. aeruginosa PAO1 biofilm formation...

متن کامل

Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach.

The administration of macrolides such as azithromycin for chronic pulmonary infection of cystic fibrosis patients has been reported to be of benefit. Although the mechanisms of action remain obscure, anti-inflammatory effects as well as interference of the macrolide with Pseudomonas aeruginosa virulence factor production have been suggested to contribute to an improved clinical outcome. In this...

متن کامل

Extracts of Cordia gilletii de wild (Boraginaceae) quench the quorum sensing of Pseudomonas aeruginosa PAO1

AIM The fight against infectious diseases and antimicrobial resistances needs the exploration of new active compounds with new proprieties like disrupting quorum sensing (QS) mechanisms, which is a cell-to-cell communication that regulates bacterial virulence factors. In this work, leaves and root barks extracts of a Congolese medicinal plant, Cordia gilletii, were investigated for their effect...

متن کامل

Quorum-sensing-regulated virulence factors in Pseudomonas aeruginosa are toxic to Lucilia sericata maggots

Maggot debridement therapy (MDT) is widely used for debridement of chronic infected wounds; however, for wounds harbouring specific bacteria limited effect or failure of the treatment has been described. Here we studied the survival of Lucilia sericata maggots encountering Pseudomonas aeruginosa PAO1 in a simple assay with emphasis on the quorum-sensing (QS)-regulated virulence. The maggots wer...

متن کامل

Meloxicam inhibits biofilm formation and enhances antimicrobial agents efficacy by Pseudomonas aeruginosa

Microbial biofilms are communities of surface-adhered cells enclosed in a matrix of extracellular polymeric substances. Bacterial cells in biofilm are 10~1,000-fold more resistant to antimicrobials than the planktonic cells. Burgeoning antibiotic resistance in Pseudomonas aeruginosa biofilm has necessitated the development of antimicrobial agents. Here, we have investigated the antibiofilm effe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017